产品中心

产品分类

联系我们

上海睿米仪器仪表有限公司

地 址:上海.浦东.航头镇.乐城路30弄4号(201317)

电 话:021-58220307  

传 真:021-68539811

邮 箱:contact@realmeter.cn    

联系人:13601764364(谢先生)

网 址:www.realmeter.cn


 微信联系-谢总.jpg

十二烷标准漏孔在半导体材料放气分析中的应用

您的当前位置: 首 页 >> 产品展示 >> 液态标准漏孔

十二烷标准漏孔在半导体材料放气分析中的应用

  • 所属分类:液态标准漏孔

  • 点击次数:
  • 发布日期:2025/12/23
  • 更多
  • 在线询价
详细介绍
十二烷<a href='http://www.realmeter.cn/product/bzlkd42/' target='_blank' class='key_tag'><font color=#136ec2><strong>标准漏孔</strong></font></a>在半导体材料放气分析中的应用(中英双语) - v3.2

十二烷标准漏孔在半导体材料放气分析中的应用(中英双语)

Application of n‑Dodecane Calibrated Leak in Semiconductor Material Outgassing Analysis (Bilingual)

版本:v3.2          默认语言:中文          发布日期:2025-12-22
SEMI / Fab Engineering Whitepaper • v3.1

十二烷标准漏孔在半导体材料放气分析中的应用(图文版)

—从饱和蒸气压的底层物理到质量法(直接法)计量,再到 RGA 定量放气与 Fab 风险预算的工程闭环

发布日期:2025-12-22    图:6 张(SEMI/Fab 风格)    输出:单文件 HTML(内嵌图片)

摘要

半导体制造中,材料放气(Outgassing)与有机污染(Organic Contamination)长期存在一个核心矛盾:RGA 能“看见”有机峰,却难以给出“可溯源、可跨实验室对齐”的有机放气通量。 传统标准(如 ASTM E595)提供了宏观指标(TML/CVCM),而 SEMI F 系列更偏工程规范边界, 二者都难以直接回答“在真实真空与工艺窗口里,材料释放的重烃污染负载是否超出工艺裕量”。

本文系统论证:采用十二烷(n-Dodecane, C12H26)作为半导体真空系统中的重烃代表分子(HHC proxy),通过基于饱和蒸气压的稳定通量源结构形成可重复放气, 并使用质量法(Gravimetric Method)进行第三方计量(直接法/基准法), 可将 RGA 从“定性诊断工具”升级为“定量计量工具”,从而实现材料放气数据的工程可比、 跨系统对齐与工艺风险定量。

1. 背景与问题定义:Fab 需要什么

1.1 放气问题的 Fab 语义:不是“有没有峰”,而是“通量有多大、风险有多高”

在先进制程(尤其光刻/高真空腔体/极高洁净系统)里,放气问题常表现为 RGA 背景中 CxHy 相关峰抬升、 抽空后衰减缓慢、关键表面出现有机沉积或吸附层增长、维护后背景出现不可预期漂移等。 但现实是:不同腔体、不同离子源、不同采样位置、不同灵敏度与分辨率条件下, 同一材料可能给出完全不同的峰值强度。

关键缺口:RGA 的“峰值强弱”很难直接变成可比较、可预算、可追责的“真实放气通量”。 Fab 需要一个“已知、稳定、可溯源”的有机放气基准源,把信号强度与真实通量对应起来。

1.2 为什么需要“标准源”而不是“再买一台更灵敏的 RGA”

灵敏度提升并不会自动解决定量问题:RGA 的读数仍受仪器状态(离子源、四极杆透过率)、系统几何(采样位置、抽速分配)、 背景与基线漂移等影响。没有标准源时,RGA 更像“诊断仪”而不是“计量仪”: 能告诉你“变化了”,却难告诉你“变化了多少”以及“跨系统是否一致”。

2. 十二烷作为 HHC 代表分子的工程合理性

2.1 十二烷在半导体语境中代表什么

十二烷在此并非燃料语义,而是被用作重碳氢化合物(Heavy Hydrocarbon, HHC)代表分子: 重、难抽、易积累、易沉积,且对光刻等关键工艺窗口极为敏感。 其工程目标不是“复刻所有真实放气组分”,而是提供一个最坏情形(Worst-case)污染标尺: 若材料放气达到“等效十二烷通量 X”,工艺是否仍在安全裕量内?

2.2 典型来源与应用场景

  • 真空腔体材料:聚合物密封件(O-ring)、胶粘剂、涂层、线缆与绝缘材料等;

  • 清洗/装配残留:挥发性有机物(VOCs)及更重的碳氢链残留;

  • 运输与存储:包装材料迁移与吸附再释放;

  • 设备维护后背景上升:与有机薄膜/吸附层再平衡相关。

3. 底层物理:饱和蒸气压 + 几何限流形成稳定通量源

3.1 “饱和蒸气压”把驱动力锁定为物性常数

当纯液体十二烷在恒定温度 T 下与蒸气相共存,液相–气相界面满足:

[ P = P_{mathrm{sat}}(T) ]

其中 (P_{mathrm{sat}}(T)) 为十二烷在温度 T 的饱和蒸气压(物性常数)。 此时“源项”由温度决定,而非由外部供气系统、阀门开度或操作员设定决定。 因此只要温控稳定,驱动力就稳定。

3.2 “微通道/毛细通道”只做几何限定(通导/限流),不引入额外假设

将饱和蒸气空间通过微通道连接到真空腔体,微通道的作用是:限定几何通导,使得向腔体输出一个稳定通量。 对“标准源”而言,这种设计的关键优势是把系统主要不确定度压缩到:

  • 温度稳定性(决定 (P_{mathrm{sat}}));

  • 通道几何与材料稳定性(决定通导随时间漂移的程度);

  • 外部真空条件对输出通量的二阶影响(可通过工况定义与验证控制)。

图 1:饱和蒸气压驱动的液体标准漏孔结构示意(SEMI/Fab 风格)

3.3 为什么这种结构天然适合“做标准”

“标准”最怕三种漂移:驱动力漂移、结构漂移、状态漂移。饱和蒸气压结构将驱动力绑定到物性与温度; 微通道结构可通过材料与工艺提高机械可靠性与抗冲击能力,从而降低结构漂移; 状态漂移则通过定义温度、稳态时间、腔体抽速条件来压制。 因此这种路线本质是把问题降维到“温度 + 几何 + 工况”,更接近可工程化与可溯源的标准体系。

4. 计量学底层逻辑:质量法(直接法/基准法)与溯源链条

4.1 为什么质量法是液体放气/泄漏计量的直接法(Primary/Direct Method)

质量法的核心表达式只有一行:

[ dot{m} = frac{Delta m}{Delta t} ]

它直接基于 SI 基本量:质量(kg)与时间(s),因此具备“基准方法”的典型特征:不依赖参考漏孔、不依赖检漏仪示值线性假设、不依赖把液体硬等效成气体的模型链条。 对液体介质而言,这种“底层逻辑成立”的直接法,是把“液体标准漏孔”从工程手段推进到计量学语义的关键一步。

4.2 质量法证书的工程含义:先得到真实质量通量,再做行业单位对齐

工程上常见两种表达:

  • 年泄漏量(g/a):对液体最直观,便于做污染负载预算;

  • 漏率(mbar·L/s 或 Pa·m³/s):真空行业常用,便于与抽速/通导计算体系对接。

关键是:质量法得到 (dot m) 后,换算到 mbar·L/s 只是为了行业语言对齐;计量本体仍然是 Δm/Δt。 因此建议在 Fab 文件中同时保留 g/a 与 mbar·L/s(或 Pa·m³/s),并明确温度条件与不确定度(k=2)。

图 2:液体标准漏孔计量路径层级——质量法(直接法)vs 相对法 vs 气体等效法

4.3 与相对比较法/气体等效法的层级差异(为什么这是“更底层”)

方法是否依赖模型是否依赖参考件SI 直接溯源典型用途
质量法(Gravimetric)最低(仅需基本修正项)是(kg、s)液体通量基准、标准建立
相对比较法间接工程快速校准、转移标准
气体等效法高(液→气的等效链条)可选间接工程兼容性、历史体系对接

5. 用标准漏孔把 RGA 从定性升级为定量:映射、锚点与闭环流程

5.1 定量的核心:建立“信号强度 ↔ 通量”的映射

RGA 的信号受离子源状态、透过率、采样位置、抽速分配、背景基线等影响。 因此定量的第一步不是“更灵敏”,而是“更可对齐”: 引入已知通量的十二烷标准漏孔作为输入,记录稳定段的特征 m/z 信号, 建立映射函数(线性或分段线性/拟合):

[ S_{m/z} ;longleftrightarrow; dot{m}_{mathrm{C12}} ]

其中 (S_{m/z}) 为选定质量数的稳态信号(或积分信号),(dot m_{mathrm{C12}}) 为证书给定的十二烷通量。

图 3:RGA 定量标定与材料放气测试闭环流程(以十二烷标准漏孔为基准源)

5.2 锚点选择:为什么常用 m/z 57、71、85 等(并建议冗余)

工程实践中锚点选择遵循三条原则:信号强(SNR 高)、干扰少(与常见背景气体不重叠或可分离)、对 HHC 具有代表性。 因此常选 2–3 个锚点形成冗余(例如 57/71/85),并对锚点间一致性做健康检查: 若某锚点受干扰(背景谱变化),可用其他锚点交叉验证。

图 4:十二烷(HHC proxy)特征碎片与 m/z 锚点选择示意(用于定量锚定)

5.3 闭环:标定 → 测材料 → 换算 → 对齐

通过标准漏孔完成标定后,材料测试阶段可输出“等效十二烷通量”随时间/温度的曲线, 从而支持:材料排序、批次一致性评估、工艺窗口风险预算与跨实验室对齐。

6. 工程落地:从峰值到通量预算、跨实验室对齐与风险评估

6.1 从“峰高”到“预算语言”:g/a 与累积负载

Fab 的关键问题往往是预算问题:某模块允许的有机负载上限是多少?某材料在特定温度谱下的累积负载是多少? 用“等效十二烷通量”即可把 RGA 结果转成可预算语言(例如 g/a、mg/day),并可进一步做积分得到累积负载。 这使得放气评估从“经验判断”升级为“工程决策”。

图 5:标准源稳态通量与材料放气响应的时间/温度曲线示意(用于预算与对齐)

6.2 跨系统对齐:为什么标准源是“对齐器”而非“装饰品”

没有标准源时,两套 RGA 系统很难仅凭“同型号仪器”获得一致的通量结论; 有了标准源后,就可以把差异压缩到可管理范围: (1)先对齐系统响应;(2)再比较材料。 这也是“标准漏孔进入材料放气体系”的核心意义:让结果可比、可复现、可审计。

7. 与 ASTM E595 / SEMI F 系列的关系与互补性说明

7.1 ASTM E595:宏观筛选有力,但不直接给出工艺相关的通量

ASTM E595 的 TML/CVCM 对材料宏观挥发性筛选很有效,但输出是宏观比例指标(%),难直接映射到真空腔体中的动态污染负载、 也难直接对应 RGA 信号强度。因此在半导体语境下,它更适合“合格性筛选层”,而不是“工艺风险定量层”。

7.2 SEMI F 系列:工程边界与一致性要求,但不定义有机通量标尺

SEMI F 系列更偏工程规范与边界条件(洁净、材料选择、接口等)。它约束“不要产生不可接受污染”, 但通常并不提供“有机通量基准分子”“RGA 定量映射”“跨实验室对齐基准源”等方法学定义。 因此 SEMI F 更多承担“工程一致性边界层”的角色。

图 6:ASTM E595 / SEMI F / 十二烷定量层 的分层互补关系地图

7.3 分层闭环(互补而非替代)

层级工具/标准输出解决的问题
材料筛选层ASTM E595TML/CVCM(%)宏观合格性筛选
工程边界层SEMI F(及内部规范)合规/洁净要求工程一致性与约束
工艺定量层十二烷标准漏孔 + RGA 定量等效十二烷通量(g/a, mbar·L/s)工艺相关风险预算与对齐

8. 推荐流程、验收条款与实施注意事项

8.1 推荐流程(建议写入 SOP)

  1. 材料初筛:ASTM E595(或内部等效流程)完成宏观挥发性/可凝结物筛选;

  2. 工程规范:按 SEMI F / 内部洁净规范做材料与装配合规审查;

  3. 关键材料定量:使用十二烷标准漏孔对 RGA 系统标定,按温度谱/时间谱对材料进行放气测试;

  4. 输出与对齐:输出“等效十二烷通量曲线 + 关键窗口稳态通量 + 累积负载”,用于材料排序与风险预算。

8.2 验收条款建议(技术协议可直接引用)

  • 标准源要求:十二烷标准漏孔需提供第三方质量法校准证书,包含 g/a 与(可选)mbar·L/s、校准温度、扩展不确定度(k=2)。

  • 标定频次:离子源更换、腔体大修、采样位置变更或背景谱显著变化后必须复标;常规建议按周期复标并留档。

  • 锚点策略:至少选择 2–3 个 m/z 锚点并做一致性检查;必要时建立背景干扰判别规则。

  • 数据输出:必须同时输出原始 RGA 曲线、换算后的等效十二烷通量曲线、关键窗口统计量与不确定度/重复性评估。

结语:从检漏附件到材料放气计量基础设施

当十二烷标准漏孔具备(1)饱和蒸气压驱动的稳定源特性,(2)微通道几何限定的可重复通量,(3)质量法第三方校准的直接法计量基础, 并被用于半导体材料放气分析的 RGA 定量标定时,它所代表的就不再是“一个检漏附件”,而是:

半导体材料放气分析从“看得见”到“算得清”、从“经验判断”到“工程可对齐”的关键计量基础设施。
SEMI / Fab Engineering Whitepaper • v3.3

Application of n-Dodecane Calibrated Leak in Semiconductor Material Outgassing Analysis

—From saturated vapor-pressure physics to gravimetric (primary/direct) metrology, and to quantitative RGA outgassing with Fab-ready risk budgeting

Release date: 2025-12-22    Figures: 6 (SEMI/Fab style)    Output: single-file HTML (embedded images)

Abstract

In semiconductor manufacturing, material outgassing and organic contamination create a persistent gap between what is observable and what is actionable:RGA can “see peaks,” but it is difficult to report an organic outgassing flux that is traceable and comparable across tools and labs.Industry standards provide partial coverage: ASTM E595 gives macroscopic screening metrics (TML/CVCM), while SEMI F-series primarily defines engineering boundaries and cleanliness expectations. However, neither framework alone directly answers the Fab question: “Under real vacuum and process windows, does the heavy-hydrocarbon (HHC) load exceed the process margin?”

This paper proposes and justifies a Fab-ready quantitative framework using n-dodecane (C12H26) as an HHC proxy. A saturated vapor-pressure driven source combined with geometric flow restriction forms a stable organic flux, while third-party gravimetric calibration (Gravimetric Method; primary/direct) anchors the flux to SI units (mass and time) with an explicit uncertainty model. This allows RGA to be upgraded from a qualitative diagnostic tool to a quantitative metrology tool, enabling cross-system alignment, material ranking, and process-relevant risk budgeting.

1. Background and the Fab problem statement

1.1 What Fab actually needs: not just “a peak,” but flux and margin

In advanced manufacturing—especially lithography and high-/ultra-high-vacuum subsystems—outgassing often appears as an HHC background that rises over time, decays slowly after pump-down, and varies unpredictably after maintenance. RGA provides rich spectral information, but peak heights are strongly affected by: ion source condition, quadrupole transmission, sampling location, effective pumping speed distribution, and baseline drift. Thus, “peak intensity” is not a stable engineering metric across different chambers, tools, or labs.

Core gap: without a calibrated organic source, RGA data remain hard to convert into a traceable, comparable flux (mass/time or mol/time). Fabs need a stable, known, and auditable organic flux reference to map signal intensity to real outgassing load.

1.2 Why “higher sensitivity” alone does not solve quantification

Improving sensitivity increases detectability but not comparability. Even a very sensitive RGA may disagree with another RGA if response factors and system geometry differ. Quantification requires a reference input with known flux under defined conditions, so that each system can be “aligned” before materials are compared.

2. Why n-dodecane: engineering rationale as an HHC proxy

2.1 What n-dodecane represents in semiconductor vacuum engineering

In this context, n-dodecane is not chosen as “the only true outgassing species.” It is used as an engineering proxy for heavy hydrocarbons (HHC): heavier molecules are harder to pump, tend to accumulate, and are more prone to adsorption/condensation on critical surfaces. For risk analysis, the key question is: if a material releases an HHC load equivalent to a known n-dodecane flux, is the process still within margin?

2.2 Typical sources and use cases

  • Polymers and seals (O-rings), adhesives, coatings, cable/insulation materials in vacuum environments;

  • Assembly/cleaning residues and VOC-to-HHC tail distributions;

  • Packaging migration and adsorption/desorption during storage and transport;

  • Post-maintenance background shifts due to re-equilibration of adsorbed films.

3. First-principles physics: saturated vapor pressure + geometric restriction = stable flux

3.1 Saturated vapor pressure locks the driving condition to a material property

For a pure liquid in equilibrium with its vapor at a controlled temperature T, the vapor phase pressure is fixed by the saturated vapor pressure:

[ P = P_{mathrm{sat}}(T) ]

Because (P_{mathrm{sat}}(T)) is a thermophysical property, the “source condition” becomes temperature-determined rather than valve-determined. With stable thermal control, the driving condition is stable and repeatable.

3.2 A microchannel/capillary acts as a geometric restrictor (conductance limiter)

Coupling the saturated vapor space to a vacuum chamber through a microchannel does not change the physics of the source; it only defines a geometric restriction that yields a stable flux into the chamber. For a standard source, this is desirable because it compresses dominant uncertainty contributors to: temperature stability, channel geometry stability, and defined external pumping conditions.

Figure 1. SEMI/Fab-style schematic of a saturated vapor-pressure driven liquid calibrated leak (n-dodecane) coupled to a vacuum chamber for RGA sampling.

3.3 Why this architecture is “standard-friendly”

A standard source must resist three drifts: driving-condition drift, structural drift, and state drift. A saturated vapor-pressure source binds the driving condition to temperature and material properties; a mechanically robust microchannel design reduces structural drift; state drift is controlled by defining temperature setpoints, stabilization time, and chamber pumping configuration. Thus, the system is reduced to manageable variables (T + geometry + defined boundary conditions), making it practical for metrology-grade deployment.

4. Metrology fundamentals: gravimetric method as a primary/direct method

4.1 Why gravimetry is the “bottom logic” for liquid flux metrology

The gravimetric method measures liquid flux directly by mass loss over time:

[ dot{m} = frac{Delta m}{Delta t} ]

This method is anchored to SI base quantities: mass (kg) and time (s). Critically, it does not rely on: a reference leak artifact, detector indication linearity, or a “liquid-to-gas equivalence model chain”. Therefore, for liquid-based calibrated leaks, gravimetry is a textbook example of a primary/direct method.

4.2 Engineering units: keep the primary quantity, provide vacuum-industry compatibility

Practically, two representations are used:

  • Mass loss rate (e.g., g/a, mg/day): intuitive for contamination budgeting;

  • Vacuum-industry leak units (mbar·L/s or Pa·m³/s): compatible with pumping-speed and conductance calculations.

The key principle is: the primary measurement is (Delta m/Delta t). Conversions to mbar·L/s exist for interoperability, but they are not the metrological “root.” Reports should always state temperature, boundary conditions, and expanded uncertainty (k=2).

Figure 2. Metrology hierarchy for liquid calibrated leaks: gravimetric (primary/direct) vs relative comparison vs gas-equivalent approaches.

4.3 Hierarchy vs relative and gas-equivalent approaches

ApproachModel dependenceNeeds reference artifactDirect SI traceabilityTypical role
Gravimetric (primary/direct)LowNoYes (kg, s)Primary liquid flux metrology; standard establishment
Relative comparisonMediumYesIndirectEngineering transfer; quick verification
Gas-equivalentHighOptionalIndirectCompatibility with legacy gas-based calibration frameworks

5. Making RGA quantitative: mapping, anchors, and closed-loop workflow

5.1 The core: map signal intensity to a known flux

RGA signals are affected by instrument state and system geometry. Quantification therefore starts by injecting a known organic flux. Using the gravimetrically calibrated n-dodecane leak as the input, record stabilized signals of selected m/z channels and build a mapping:

[ S_{m/z} ;longleftrightarrow; dot{m}_{mathrm{C12}} ]

The mapping can be linear (often sufficient in a well-behaved range) or piecewise/fit-based depending on detector regime and background conditions.

Figure 3. Closed-loop workflow: baseline → calibrated source mapping → material outgassing test → conversion to equivalent n-dodecane flux → cross-system alignment.

5.2 Choosing anchors: why 57/71/85 and why redundancy matters

Anchor selection favors high SNR, low interference, and representativeness for HHC risk. Common anchors include m/z 57, 71, 85 (fragment families typical for heavier hydrocarbons). Best practice is to select 2–3 anchors and enforce consistency checks; if one channel is perturbed by background shifts, others provide cross-validation.

Figure 4. n-Dodecane (HHC proxy) fragmentation and recommended m/z anchors (e.g., 57/71/85) for robust quantitative mapping.

5.3 Closed loop: baseline → mapping → material test → conversion → alignment

Once mapped, material tests (time/temperature programs) can be converted into equivalent n-dodecane flux vs time/temperature, supporting material ranking, batch control, and process margin analysis.

6. Engineering deployment: from peaks to flux budgeting and cross-lab alignment

6.1 From “peak height” to “budget language”: g/a and integrated load

Fab decisions are often budget decisions: allowable organic load, maintenance cycles, and accumulation rates. Using equivalent n-dodecane flux (e.g., g/a or mg/day) enables consistent budgeting and integration to cumulative load, which can be connected to pumping capacity and contamination risk thresholds.

Figure 5. Flux curves: calibrated source steady-state vs material outgassing response under time/temperature programs for budgeting and comparability.

6.2 Cross-tool alignment: the calibrated source as an “aligner”

Without a calibrated source, comparing materials across RGAs is dominated by response-factor differences. With a calibrated source, differences are reduced to manageable, auditable components: first align system response, then compare materials. This is why a calibrated leak becomes infrastructure rather than “an accessory.”

7. Relationship and complementarity with ASTM E595 / SEMI F

7.1 ASTM E595: strong for macroscopic screening, limited for process-relevant flux

ASTM E595 outputs macroscopic ratios (TML/CVCM) that are excellent for screening. However, they do not directly provide dynamic flux under Fab vacuum boundary conditions, nor do they map directly to RGA intensity or time-dependent accumulation. Thus, in semiconductor contexts, ASTM E595 is best viewed as a screening/qualification layer.

7.2 SEMI F: engineering boundaries, but not a flux yardstick

SEMI F-series defines engineering boundaries and cleanliness expectations but typically does not define an organic flux proxy molecule, a quantitative RGA mapping method, or a cross-lab alignment artifact. It therefore acts as the engineering boundary layer.

Figure 6. Complementarity map: ASTM E595 (screening) + SEMI F (engineering boundaries) + n-dodecane quantitative layer (process-relevant flux metrology).

7.3 Layered closure: complementarity rather than replacement

LayerStandard/toolOutputWhat it solves
Screening layerASTM E595TML/CVCM (%)Macroscopic material screening
Engineering boundary layerSEMI F (and internal specs)Compliance/cleanliness requirementsEngineering consistency and constraints
Process-quantitative layern-Dodecane calibrated leak + quantitative RGAEquivalent n-dodecane flux (g/a, mbar·L/s)Process-relevant risk budgeting and cross-lab alignment

8. Recommended SOP, acceptance criteria, and implementation notes

8.1 Recommended SOP (Fab-ready)

  1. Screening: ASTM E595 (or internal equivalent) for macroscopic volatility/condensables.

  2. Engineering compliance: SEMI F / internal cleanliness and material selection requirements.

  3. Key-material quantification: calibrate RGA response using the gravimetrically calibrated n-dodecane leak; run time/temperature outgassing programs for materials.

  4. Output & alignment: report raw RGA curves + converted equivalent n-dodecane flux curves + steady-window statistics + repeatability/uncertainty notes.

8.2 Acceptance criteria suggestions (contract-ready)

  • Reference artifact: require a third-party gravimetric calibration certificate including g/a (and optional mbar·L/s), calibration temperature, and expanded uncertainty (k=2).

  • Re-calibration triggers: ion source replacement, major chamber maintenance, sampling geometry changes, or significant background shifts.

  • Anchor strategy: choose ≥2–3 m/z anchors and enforce consistency checks; define interference rules if needed.

  • Deliverables: provide both raw spectra/time series and converted flux curves; document boundary conditions and repeatability.

Conclusion

When a liquid calibrated leak is built on saturated vapor-pressure physics, stabilized by robust geometric restriction, and calibrated via gravimetry with explicit uncertainty, it becomes more than a leak-testing component. In semiconductor material outgassing analysis, it functions as metrological infrastructure that enables: traceable quantitative RGA, cross-lab alignment, and process-relevant organic contamination budgeting.

相关标签:标准漏孔

上一篇:十二烷C12H26标准漏孔
下一篇:没有了

最近浏览:

在线客服
二维码

扫描二维码

分享
欢迎给我们留言
请在此输入留言内容,我们会尽快与您联系。
姓名
联系人
电话
座机/手机号码