
REALMETER® 正十二烷（n-C12H26）
标准漏孔

面向 EUV光刻HHC污染的可溯源量化基准与管控方法（白皮书）

v1.0  |  2026-01-10

上海睿米仪器仪表有限公司｜REALMETER®

文档级别：对外公开（Public）

摘要要点：本白皮书给出一种把 RGA “ ”趋势信号升级为 可溯源分压 的工程方法。通过标准漏

 孔证书给定的输出 Q（Pa·m³/s  ），在同 型下建立构 P_std=Q/S_eff  与响应因子 K=I/P，实现HHC

相关峰的定量换算、阈值化监控与溯源诊断。
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© 2026 上海睿米仪器仪表有限公司。保留所有权利。

本文件为对外公开（Public  ）版本，用于介绍 REALMETER® 正十二烷（n-C₁₂H₂₆） 准漏孔在标
EUV光刻HHC（可凝结有机污染物）量化管控中的原理与方法。未经书面许可，不得以任何形式
复制、传播或用于商业推广以外的用途。

本文件所述方法与参数为通用工程指导，具体阈值、测点与工艺判据需结合客户工具构型（抽
速/电导/测点位置/运行工况）与内部规范确定。除非合同或证书另有约定，本文不构成对特定用
途的保证或承诺。

如需获取证书样例、现场导入建议或接口/  流量定制方案，请联系 REALMETER® 技术支持。
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术语与缩略语表
本节给出本文中常用术语与缩略语的统一定义，便于跨团队复现与审计。

 表 3  略表

缩写/符号 英文全称 中文说明
EUV Extreme Ultraviolet 紫外光刻
RGA Residual Gas Analyzer 残余气体分析仪
HHC Heavy Hydrocarbons 重碳氢化合物/可凝结有机物

（广义）
AMC Airborne Molecular 

Contamination
空气分子污染（洁净室语境）

CNAS China National 
Accreditation Service

中国合格评定国家认可委员会

VCR VCR® metal gasket face 
seal

金面密封接（空接）

CF ConFlat® flange 刀口法金密封（）
S_eff Effective pumping speed 测点处有效抽速（含电导影

响）
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Q Throughput 吞吐量/漏率（Pa·m³/s  或
mbar·L/s）

P Partial pressure 分压（Pa/mbar/Torr）
K Response factor 响应因子（I/P）
sccm standard cubic centimeter 

per minute
标准毫升每分钟（标准体积流
量）

符号与单位
“本白皮书采用真空工程常用 吞吐量/漏率（Throughput ”） 定 ：义 Q  的单位为 Pa·m³/s（亦常

 用mbar·L/s）。下表 出全文 符 明。给 关键 号与说

 表 4  符号定义与单位

符号 含义 典型单位 备注
Q 标准漏孔输出（证书给

定）
Pa·m³/s  或mbar·L/s 通过质量法标定

Δm 质量变化量 g  或 kg 与M单位保持一致
M 摩尔质量（正十二烷） g/mol C12H26  170.34 ≈

g/mol
Δt 计时区间 s 质量法测量时间窗
R 气体常数 J/(mol·K) R=8.314
T 温度 K T=273.15+℃
P0 标准压力 Pa 用于换算标准体积流量
S_eff 测点有效抽速 m³/s  或 L/s 含管路电导/阀门影响
P_std 通入漏孔后的稳态分压 Pa  或mbar P_std=Q/S_eff
I RGA特征峰信号 counts/s  或 A 与 RGA设置有关
K 响应因子 (counts/s)/Pa  或 A/Pa K=I_std/P_std
m/z 质荷比（质量数） amu/e RGA质量轴

常用单位换算
 表 5  常用单位换算

换算项 关系式
压力 1 mbar = 100 Pa；1 Torr  133.322 Pa≈
吞吐量/漏率 1 Pa·m³/s = 10 mbar·L/s
标准体积流量 V̇ _std = Q / P0  （单位m³/s @P0, T）
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摘要

随着半导体工艺向先进节点演进，极紫外（EUV）光刻 腔 光 模 的有机 染控制提对 体与 学 块 污

出更严苛要求。重碳氢化合物（HHC，本文主要指可凝结的重烃/有机物组分）在 EUV辐照条件

下可能在光学表面形成碳沉积，导致反射率下降并增加维护频率。现有现场实践多依赖残余气体

分析仪（RGA）的峰形 判 ， 以在不同与趋势 断 难 设备/不同产线之间建立可比的量化指标。

REALMETER® 正十二烷（n-C12H26） 准漏孔通 量 失法（标 过质 损 Mass-loss）在 CNAS认可实

验室完成标定，提供可溯源的漏率/  吞吐量 Q（Pa·m³/s） 。 准信 源在 定 空 型证书 将该标 号 既 真 构

 下接入后，可建立稳态分压 P 与 RGA  信号 I  的响应因子 K=I/P，实现HHC相关峰的定量换算与

阈值化管理，并为污染溯源、材料筛选与工艺参数优化提供可复现的工程基准。

 图 1  从标准漏孔到分压：量化链路（Q  P_std  K→ → ）

一、行业背景：EUV光刻时代的 HHC污染管控困境

1.1 半导体工艺演进驱动 EUV光刻成为核心支撑

“ ”全球半导体产业正朝着 更小、更快、更节能 的方向迭代，制程节点持续向更先进水平推

进。在此进程中，传统深紫外（DUV）光刻在 面 分辨率 工 度的限制；关键层 临 与 艺复杂 EUV光刻

 凭借 13.5 nm 的短波长，在先进制程的关键层应用中发挥越来越重要的作用。

1.2 HHC污染：EUV光刻的核心技术隐患

EUV光刻系 工作 境 度提出 致要求，尤其需 格控制重 化合物（统对 环 洁净 极 严 碳氢 HHC，

C₆⁺） 染。污 HHC主要来源于光刻胶挥发、密封件放气、管路吸附残留等环节，在 EUV光子 射辐

作用下，会在Mo/Si多层膜光学反射镜表面发生解离聚合，形成稳定的类石墨碳膜。行业研究数

据表明，仅 1~3nm厚的碳膜即可导致 EUV反射 反射率下降至少镜 1%，直接引发光刻图形线宽

偏差（CD）增大、套刻精度降低，最 造成芯片良率下滑；若 染持 累 ， 致光 元终 碳污 续 积 还会导 学

件不可逆损伤，显著增加设备维护成本与停机损失。
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在 EUV相关模块中，系统总压与局部分压会随腔体架构、抽气路径与工况变化而不同。对污

染管控而言，更关键的是将可凝结有机物（HHC）在 点的分 控制在 低水平， 通 可关键测 压 极 并 过

复现的量化方法进行监测、对比与阈值管理。

1.3 传统 HHC分析方法的局限性

在 REALMETER®正十二烷漏孔问世前，半导体行业对 EUV光刻HHC污染的分析普遍采

“ ”用 趋势性定性判断 模式，即依赖残余气体分析仪（RGA）的峰形 化推 染是否存在， 模变 测污 该

式存在三大核心局限，无法适配先进制程需求：

无法定量：缺乏标准化参考基准，无法将 RGA信号强度转化为具体的HHC分压或浓度数

据，难以精准判断污染程度是否超出行业安全阈值；

溯源困难：无法有效区分HHC污染来源（外部泄漏、内部材料放气或光刻胶产气），导致污

“ ”染管控陷入 被动应对 困境，难以从源头解决问题；

数据不可比：不同产线、不同设备间缺乏统一的检测标准，数据偏差较大，无法为跨线工艺

协同与良率分析提供可靠支撑；

随着先进工艺对污染控制要求提高，单纯依赖峰形/趋势的定性判断已难以支撑跨工具、跨产

线的一致性管理。现场迫切需要一种可溯源的标准化信号源，把 RGA输出（counts/s  或 A） 分与

压（Pa、mbar  或 Torr）建立可校准的 算 系， 而 可比的量化判定 快速溯源。换 关 从 实现 与

二、核心需求：何需要 REALMETER®正十二烷漏孔？

2.1 精准量化：匹配 EUV光刻 ppt级检测需求

EUV相关模块对HHC的关注分压通常处于极低量级，信号易受 RGA灵敏度、背景、本底漂

“移以及抽速构型影响。为获得可比的定量结果，需要使用标准化物质建立 信号强度- ”分压 的换算

关系。REALMETER® 正十二烷标准漏孔可提供 CNAS可溯源的漏率/  吞吐量 Q 证书（典型可定

 制范围 1×10⁻¹⁰～1×10⁻⁴ Pa·m³/s；1 Pa·m³/s = 10 mbar·L/s），作为HHC定量分析的基准输

入。

2.2 “污染溯源：实现 精准定位- ”靶向管控

通过在相同真空构型下建立响应因子，并结合工艺阶段、温度/抽速变化、以及多碎片峰比值

 （例如m/z=43/57/71/85 的相对关系），可显著提升对外部泄漏、材料放气与工艺产气等来源的

区分效率。上述判定应与检漏、材料替换或工艺复核等手段形成证据链，以获得可审计的溯源结

论。
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2.3 标准统一：支撑跨产线工艺协同

REALMETER® 正十二烷漏孔配备 CNAS可溯源证书，标定过程采用质量损失法直接溯源至

国际单位制（SI）中的 量基本量。 出的 漏率质 证书给 实际 /  吞吐量 Q 为使用基准；证书不确定度

 （通常以 k=2 给出）以证书为准，典型可做到≤0.5%。需注意：漏孔可按目标值定制，制造偏差

可能高于证书不确定度，但最终以证书给出的实际值进行量化计算与数据对比。

2.4 安全适配：无二次污染风险

 正十二烷化学惰性良好，在室温具有一定蒸气压（例如 23 °C  约 13 Pa； 度升高而上随温

升），无需额外加热即可形成稳定释放。作为标定介质，其主要作用是提供可重复的有机物指纹

与可溯源的输入量；使用过程中需按 SOP进行预抽与洁净管理，以减少外部污染引入与记忆效

应。

三、关键价值：从趋势判断到量化管控的能力升级

3.1 技术突破：建立 HHC量化分析的底层逻辑

REALMETER® “ ”正十二烷漏孔的核心突破，在于将 质量法直接标定 技术与 EUV光刻HHC分

“析场景深度适配，构建起 标准漏率-稳态分压- ”信号强度 的完整量化逻辑链，具体实现路径如下：

通过质量法精准称量单位时间内正十二烷的质量损耗，结合其摩尔质量及理想气体状态方程

直接计算漏率，规避间接法的累积误差；

漏孔释放的正十二烷在 EUV腔中经分子泵抽排，形成稳定的稳态分压（P=Q/S，其中Q为漏

率，S为分子泵抽速）；

基于稳态分压（P）与 RGA特征峰信号强度（I）建立 因子模型（响应 K=I/P），可 工将实际

况中的 RGA信号直接转化为HHC “ ” “ ”分压，实现从 定性判断 到 定量计算 的本质跨越。

与传统定性分析方法相比，REALMETER®量化方案的技术优势显著，具体对比如下：

3.2 工艺保障：筑牢 EUV光刻良率防线

REALMETER®正十二烷漏孔的量化分析能力，为 EUV光刻工 提供全流程 度保障，其艺 洁净

核心价值主要体现在以下三方面：

光 元件保 ：通 量化 建立 度 警机制（ 依据工具 格、 点位置学 护 过 监测 洁净 阈值与预 阈值应 规 测

与反射率容许度确定），在污染接近阈值前触发维护与排查，降低不可逆沉积风险。

工艺优化：基于量化数据评估烘烤、抽气路径与材料选择对HHC的影响，缩短问题定位时

间，并为烘烤策略、泵组配置与材料导入提供数据依据。

良率与稳定性：通过减少HHC波动带来的工艺漂移风险，提升跨批次稳定性；具体收益应结

合客户工具构型与工艺数据进行评估。
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3.3 产业价值：建立可溯源量化基准，降低供应链与验证不确定性

在高端标准漏孔与超低流量基准件领域，行业普遍采用第三方溯源与证书体系以满足审核与

复现要求。REALMETER® 通过质量损失法标定与工程化设计，提供面向气体与可凝结有机物的

标准漏孔方案，并可按客户构型输出标定证书与使用指南，便于快速导入与审计。

产品体系可覆盖常见惰性气体/工艺气体以及可凝结有机物（如正十二烷等）的单介质标准漏

孔，并可按需求提供接口与阀门配置。对比维度（稳定性、可重复性、证书不确定度、交付一致

性）建议以可验证数据与证书为准。

溯源体系：依托 CNAS认可实验室，提供符合审核要求的溯源证书与记录链条，便于复现与

审计。

定制能力：可根据客户需求定制 3×10⁻⁶~3×10⁻⁹ Pa·m³/s等全量程漏率，适配不同工艺场

景；

交付与服务：通过本地化交付与定制化支持，降低交付周期与综合导入成本（具体以项目配

置与现场条件为准）。

该漏孔方案的价值在于：为 EUV相关模块的HHC监测提供可溯源的标准输入与可复现的量

化流程。在研发与量产导入阶段，可用于洁净度设计验证、真空系统性能评估、材料/部件放气筛

选与维护触发条件的建立，从而提升问题定位效率与跨工具数据一致性。具体导入路径与收益应

结合客户工具架构、测点位置、抽速构型与工艺数据进行评估。

四、核心技术原理与操作体系

4.1 经典十二烷漏孔产品介绍及核心规格

REALMETER®十二烷（C₁₂H₂₆） 准漏孔，是 半标 专为 导体 EUV光刻HHC污染量化管控设

计的核心基准器件，采用微通道毛细管制作工艺，具备稳定可靠、场景适配性强等特点。

其核心规格参数（经典漏率）如下：
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 图 2  典型安装与接口：VCR 1/4"  标配（可选 VCR CF35/CF40 → 接）

 表 6  品核心格（摘要）

项目 规格/说明
型格 典型型号 RM5C123.0-6 Pa，支持定制化生产；
核心漏率（ ）证书值  典型 3.0 × 10⁻⁶ Pa·m³/s（23 °C  ，约 3.0 × 10⁻⁵ 

mbar·L/s  ）；可定制范围 1 × 10⁻¹⁰～1 × 10⁻⁴ 
Pa·m³/s。制造按目标值控制（目标偏差可达
±30%），但使用以 CNAS证书给出的实际值为
准； 不 定度典型≤证书 确 0.5%（以证书为准）。

填充介质 正十二烷（C₁₂H₂₆），化学惰性优异，无二次污
染风险；

制作工艺 微通道毛细管结构，确保漏率稳定性；
关键部件  配备 1  个 REALMETER® PSOZV™ 常闭气动阀

 （可选配MDZV™ 等配置，按项目需求）；驱动
 气压 0.4-0.6  MPa  ；兼容 4  mm  或 6  mm 气

管。
真空连接  标配 VCR 1/4" male  ；可选配

VCR-to-CF35/CF40 转接件或按项目定制 CF接
口。

物理尺寸 235 mm  （高） × 100 mm（最宽），结构紧凑
便于安装；

使用条件与预处理  下游（真空侧）压力建议低于 0.1 Pa  （约 1 × 
10⁻³ mbar）；输出对温度敏感，建议控制环境
温度并根据证书/温度修正曲线进行修正。首次使

 用建议预抽约 2 h（或直至本底稳定）；日常使
 用预抽约 10 min 可完成校准；若系统破真空或

更换管路，应重新预抽并重建基线。

4.2 核心技术：质量法直接标定原理

REALMETER® 正十二烷漏孔采用质量损失法（Mass-loss） 行直接 定：通 高精度进 标 过 称

 量在已知时间窗口内漏孔释放介质的质量损耗 Δm，换算得到摩尔流量，并结合理想气体状态方

程得到漏率/  吞吐量 Q “ ”。该方法以 质量 作为基准量，可直接追溯至 SI质量基本量，避免间接法的

累积误差，适合为 RGA定量建立可审计的基准输入。

核心公式（漏率/吞吐量，Throughput）：Q = (Δm / (M × Δt)) × R × T

公式说明：Q 为漏率/吞吐量（Throughput  ，单位 Pa·m³/s），Δm 为称量时间窗口内的质量

损耗（kg  或 g  ，需与M 的单位一致），M 为摩尔质量（kg/mol  或 g/mol），Δt 为称量时间

（s），R 为气体常数（8.314 J/(mol·K)），T 为绝对温度（K）。 位 算：单 换 1 Pa·m³/s = 10 

mbar·L/s。若需要标准体积流量（m³/s@P₀,T  ），可由 V̇ _std = Q / P₀  计算，其中 P₀ 为标准压力

（Pa）。
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标定过程在 CNAS认可实验室完成，核心环境要求：温度 23±0.1℃、相对湿度 45±2%RH，

洁净度达 ISO 5级；采用 1μg级高精度电子天平完成称量，标定结果可直接追溯至国家计量基

准，确保溯源权威性与数据可靠性。

4.3 关键特性：适配 EUV光刻场景

漏率特性：漏率不可调节，但可定制 3×10⁻⁶~3×10⁻⁹ Pa·m³/s等全量程规格，常温下（蒸气

压 13 Pa） 可 定 放分子流，无需 外加 ；即 稳 释 额 热

稳定性：年漏率漂移典型＜1%（以产品与使用条件为准），适合长期基线维护与对比分析。

 兼容性：主体采用 316L  不锈钢与金属密封体系；真空接口可为 VCR  或 CF（通过转接件或

定制实现），连接管路建议采用电解抛光不锈钢管/波纹管，尽量避免有机材料与死角。

安全性：正十二烷化学惰性高，与半导体核心材料无反应，无二次污染风险。

4.4 核心操作流程

 图 3  标准化量化校准与诊断流程（示意）

基于 REALMETER®正十二烷漏孔的HHC “量化分析，核心操作流程分为 设备连接-基线建

立-定量计算- ”污染溯源 四步，确保操作标准化、结果可复现且可靠，具体流程如下：

 设备连接：采用内壁电解抛光的 316L 不锈钢波纹管/管件，将漏孔连接至 RGA采样口附近

（尽量距离短、少弯、少死角），避免管路体积与记忆效应导致信号失真；通过氦质谱检漏仪验

证连接密封性，连接漏率目标建议≤1×10⁻¹⁰ Pa·m³/s（或按客户规范）。

 基线建立：①本底基线：关闭漏孔，连续采集一定时长（建议≥30 min）的HHC相关峰信

 号（如m/z=43/57/71/85  ）， 本底均 波 （ 准差）；② 准基 ：打 漏孔，待代表记录 值与 动 标 标 线 开

 峰与相关峰进入稳态后采集数据，得到稳态信号 I_std  ； 合 出的结 证书给 Q  与测点有效抽速 S_eff 

 计算 P_std = Q / S_eff  ，并建立响应因子 K = I_std / P_std  ；③判定基 ：依据工具 格 工 容线 规 与 艺

 许度设定 P_limit  ，并用 K  映射为 I_limit，定义正常/预警/超标分级区间，写入现场 SOP。
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 定量计算：实际工况中，实时采集代表峰与辅助峰信号 I_real  ，扣除本底 I_bg  后，按 P_real 

= (I_real - I_bg) / K 计算对应分压；建议同步检查多峰一致性（峰比值与指纹一致性）以降低误

判风险。

污染溯源：对比实际信号与标准基线，结合工艺阶段（如曝光/非曝光）、抽速/温度变化与多

“峰比值特征，形成对 外部泄漏/材料放气/ ”工艺产气 等来源的初步判断；并与检漏、材料替换或工

艺复核等手段形成证据链，输出可审计的溯源结论与处理措施。

五、标准化操作流程（SOP）

5.1 目的

规范使用 REALMETER®正十二烷漏孔开展 EUV光刻HHC量化分析的操作流程，确保检测

数据准确、操作安全合规、结果可靠可复现，为HHC污染精准管控提供标准化技术支撑。

5.2 适用范围

适用于 3nm/2nm及以下节点 EUV光刻 的设备 HHC污染监测，涵盖漏孔连接、基线建立、

定量计算、异常判定与处理等全流程。

5.3 前置条件与工具材料

前置条件：EUV  腔及管路已完成 120-150 °C、24-48 h 烘烤除气（降低残留有机物与水

汽）；系统本底已稳定（以现场 RGA噪声与基线判据为准）。RGA已预热≥2 h，质量轴校准完

成（建议以惰性气体或已知参考峰校准）；漏孔在 CNAS  校准证书有效期内（建议 1 年）。

 工具材料：① REALMETER® 正十二烷标准漏孔（漏率按腔体构型与检测范围选型，建议

“  由 目标分压 × ”  有效抽速 反算所需 Q  ，并在证书范围内选取）；② 316L 不锈钢电解抛光波纹

管/  管件（尽量短、少弯、少死角）；③密封与接口件：VCR 1/4" 对应密封件/  扭矩工具，或

CF35/CF40  金属密封件（视现场接口而定，必要时使用 VCR-to-CF  转接件）；④氦质谱检漏仪

 （灵敏度指标以现场设备为准，工作于氦通道m/z=4  ，用于连接密封性验证）；⑤无尘纸、无水

乙醇（或同等级溶剂）、洁净手套、力矩扳手、洁净封帽等。
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5.4 详细操作步骤

 图 4  SOP         流程概览：基线→标定→换算→监测→溯源闭环

步骤 1：设备连接与密封性验证

  部件清洁：①预处理：用无尘纸蘸取少量无水乙醇，擦拭波纹管、法兰表面浮尘；②超声波

清洗：将部件放入超声波清洗机，加入半导体级丙酮浸泡，设置功率 500W、频率 40kHz，清洗

15 min；倒出丙 ，更 半 无水乙醇，重 洗酮 换为 导体级 复清 15 min  ；③烘干：将清洗后的部件放

入高温烘箱，设置温度 120℃、鼓风速率 2m/s，烘烤 2 h  ；④验收标准：用无尘纸擦拭部件表

面，无油污残留；部件表面无水印、无划痕；烘烤后冷却至室温，立即进行下一步操作（避免二

次污染）；

连接布局：将漏孔通过不锈钢管/波纹管连接至 RGA采样口附近，优先选择距离短、体积

小、无死角的路径。按现场接口选择VCR或 CF金属密封，并按对应规范使用扭矩工具均匀紧

固，避免泄漏与颗粒/有机物引入。

 漏：① 理： 漏孔通 （氦质谱检 预处 关闭 断阀 PSOZV/等效阀，仅用于通断控制），启动泵组

  并抽至稳定本底；②设备设置：按检漏仪说明设置（氦通道m/z=4  ）；③ 漏操作：用检 氦气喷枪

沿接头、阀杆、焊缝等关键部位缓慢扫描，确认连接处总漏率满足现场要求（建议目标≤1×10⁻¹⁰ 

Pa·m³/s，或按客户规范）。

RGA参数设置：扫描范围m/z=1~200，积分时间 1s/点，扫描周期 30s，自动记录m/z=43、

57、71、85信号。

步骤 2：基线建立

 本底基线：①准备工作：关闭漏孔，待系统压力与 RGA  信号稳定；②数据采集：连续采集

一定时长（建议≥30 min）的HHC  相关峰信号；③验收标准：以现场噪声水平设定阈值，要求

“本底均值与波动满足后续定量分辨率需求，并记录作为 本底均值/ ”标准差 。



REALMETER® 正十二烷标准漏孔白皮书 v1.0

 第 16  页 /  共 20 页

 标准基线：打开漏孔，实时监测信号变化，待代表峰与相关峰（建议m/z=43/57/71/85）进

 入稳态后采集数据。记录稳态信号均值 I_std  ，并结合证书给出的 Q  与测点有效抽速 S_eff 计算稳

 态分压 P_std = Q / S_eff  ；由此得到 因子响应 K = I_std / P_std。建议重复标定并评估K的重复性

（例如偏差≤3%，以现场需求为准），用于提升换算可靠性。

 判定基线：根据工具规格与工艺容许度设定分压阈值 P_limit  ，并通过 K 将其映射为信号阈

 值 I_limit。建议定义分级区间（正常/预警/超标）并写入现场 SOP，确保判定一致、可审计。

步骤 3：HHC定量计算

关闭漏孔，待信号回落至本底后启动 EUV工艺；

 实时采集代表峰及辅助峰信号（例如以m/z=57  为代表峰，并同步记录m/z=43/71/85 作为

 一致性校验）。按 P_real = (I_real - I_bg) / K 计算对应分压（I_bg 为本底均值；K 为响应因

子）。

记录工艺阶段、信号强度、分压值及污染等级。

步骤 4：异常判定与处理

 异常判定与处理：①正常（1级）：实时信号＜21 counts/s，持续监测，每小时记录 1次

m/z=57  信号强度、系统真空度、工艺阶段，形成趋势曲线；②轻度异常（2级）：信号 21~210 

counts/s，立即暂停 EUV曝光工 ，保持分子 行， 施艺 泵运 实 120 ℃梯度补充烘烤（先 60 ℃预热

2 h，再升温至 120 ℃保温 12 h）；烘 完成后冷却至工 度，烤 艺温 复测HHC分压，若回落至＜

3×10⁻⁸ Pa（信号＜21 counts/s），可恢 工 ；若 仍不 ，重 烘复 艺 复测 达标 复 烤 1次，若仍异常则

 升级为严重异常；③严重异常（3级）：信号＞210 counts/s，立即停机（关闭 EUV光源，保持

分子泵低功率运行维持真空）；第一步：用氦质谱检漏仪排查外部泄漏（重点检测法兰接头、管

路焊缝）；第二步：若未检测到外部泄漏，拆卸漏孔与 RGA采样口连接管路，检查内部是否存在

材料放气或污染；第三步：若管路清洁，排查光刻胶是否存在异常产气，更换光刻胶批次后重新

测试；第四步：所有排查处理完成后，重新建立基线，复测HHC分压＜3×10⁻⁸ Pa后，方可恢复

 系统运行；④异常记录：详细记录异常发生时间、信号峰值、工艺阶段、处置措施及效果，纳入

《EUV光刻HHC量化分析日报》，作为工艺优化依据；

5.5 数据记录与报告

每日生成《EUV光刻HHC量化分析日报》，涵盖基线数据、工况数据、异常记录及处理结

果；每月汇总生成趋势报告，为工艺优化提供数据支撑。

5.6 注意事项与维护周期

 注意事项：①拆装与污染防控：优先在具备隔离条件下进行（隔离阀、load-lock 等），避

免直接将真空侧长时间暴露在普通环境空气中。如必须通大气，建议在洁净环境下操作，并采用

超高纯氮气置换/吹扫与洁净封帽，降低水汽与有机物引入风险；拆装后按 SOP重新烘烤除气并重
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 建基线。②工具与耗材：所有与漏孔、管路接触的工具与零件应洁净处理（溶剂擦拭、洁净烘烤

或等效流程），操作中佩戴无尘手套，避免颗粒与有机残留。

维护周期：每日记录核心数据；每月复核基线稳定性；每季度复校 RGA响应因子、清洗管

路；每年送 CNAS认可实验室复校漏孔（仍采用质量法标定）；

六、产业应用案例与价值体现

6.1 国产 EUV光刻机研发阶段的潜在应用场景与预期价值

在国产 EUV光刻机的 程中，研发进 REALMETER®正十二烷漏孔有望成为核心的HHC量化

管控工具，可针对性引入核心真空系统、光学模块等关键研发验证平台，助力构建全流程HHC量

化管控框架。该工具能够有效破解研发阶段洁净度验证缺乏量化基准、污染溯源困难等共性难

题，为国产 EUV研发提供精准的污染管控技术支撑，其潜在应用价值与预期成效如下：

污染溯源效率提升：针对研发过程中可能出现的HHC异常信号，可借助漏孔建立的标准基

准，快速精准判定污染来源（如密封件放气、材料残留等），规避传统定性方法的排查滞后问

题，助力及时解决污染隐患；

研发验证周期优化：通过量化数据支撑腔体烘烤等工艺参数的优化，有望缩短核心真空系统

洁净度达标的验证时间，提升研发验证效率，为相关模块研发进度提供保障；

核心部件保护支撑：可精准量化光学元件等核心部件测试环境的HHC污染水平，建立适配的

洁净度安全阈值，减少污染导致的测试失效风险，降低研发过程中的耗材损耗与成本投入；

光刻 适配：在胶研发筛选 国产 EUV光刻 段，可利用漏孔建立 准化胶研发筛选阶 标 HHC放气

测试体系，辅助筛选低污染光刻胶型号，为光刻胶配方优化提供量化参考，避免后续研发返工；

真空系统设计优化：针对核心真空系统的泵组配置、腔体结构设计等，可通过漏孔模拟HHC

污染场景，量化评估不同设计方案的污染控制能力，为优化真空系统设计提供数据支撑；

光 模 集成保障：在核心光 模 集成 段，可借助漏孔 建模 工 的学 块 学 块 测试阶 构 拟 况 HHC污染环

境，光模在不同染水平下的性能定性，助制定光模的度收准，保障集成后的光性能；

整机联调污染管控：针对整机联调阶段可能出现的多子系统复合HHC污染，可通过漏孔建立

的量化分析逻辑，区分不同子系统的污染影响，辅助优化各子系统洁净度管控策略，保障整机联

调顺利推进；

长期可靠性验证支撑：在设备长期稳定性测试中，可利用漏孔模拟实际工况下的HHC污染累

积过程，监测污染累积对设备核心性能的影响，为设备寿命评估及维护方案制定提供参考；

国产供应链适配验证：可依托漏孔建立标准化测试平台，对国产真空管路、密封件等配套材

料的HHC放气水平进行量化验证，助力筛选符合研发要求的国产材料，推动 EUV产业链配套材

料的国产化适配；
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研发与量产标准衔接：提前依托漏孔建立研发阶段的HHC量化标准，可实现与未来量产阶段

洁净度管控标准的有效衔接，为后续产业化落地奠定统一的洁净度管控基础。

6.2 国产 EUV生态支撑价值

REALMETER®正十二烷漏孔有望为国产 EUV光刻机 及配套材料 全流程提供 量研发 检测 关键

化支撑：在核心材料筛选阶段，可精准量化不同材料的HHC放气水平，为低污染材料选型提供客

观依据；在真空系统研发阶段，能辅助评估系统污染控制能力，助力设计优化；在工艺验证阶

“ ”段，可推动建立洁净度量化标准，保障研发成果的稳定性与可靠性。这种 研发即量化 的提前布

局，不仅可为国产 EUV光刻 、光 元件等配套 的性能 提供可溯源的量化基准，更有助胶 学 环节 验证

于我国在 EUV研发初期构建优于国际同行的洁净度管控体系，推动产业链关键环节技术突破，助

力降低对进口检测设备的依赖，为实现 EUV领域的自主可控与技术赶超奠定基础。

七、未来展望
随着半导体工艺向 1.4nm及以下节点演进，EUV光刻对HHC污染的管控要求将进一步升

级，对量化分析工具的精度、稳定性、智能化水平提出更高要求。REALMETER®将持续深耕半

导体检测领域，围绕以下方向推进技术创新与迭代：

更高精度标定：持续提升质量法标定精度，突破现有技术瓶颈，以适配更先进工艺的 ppt级

乃至亚 ppt级超痕量HHC检测需求；

智能化分析：开发集成漏孔控制、信号采集、数据处理的一体化系统，实现HHC污染的实时

监测、自动预警与智能溯源；

全品类覆盖：拓展正十二烷之外的其他HHC标准漏孔品类，满足不同污染组分的量化分析需

求；

生态协同：联合高校、科研院所与产业链伙伴，推动形成可复现的测试方法与推荐实践（如

选型、标定、温度修正与数据报告格式），促进 EUV相关有机污染监测的工程化与标准化。

八、结论
REALMETER® 正十二烷标准漏孔为 EUV相关模块的HHC监测提供了可溯源的量化基准：

通过在既定真空构型下建立响应因子，将 RGA “信号与分压建立可校准的换算关系，从而把 趋势

” “ ”性判断 升级为 可复现、可对比、可审计 的量化管理方法。该方法可用于阈值设定、维护触发、

材料筛选与工艺参数优化，并提升污染溯源效率。

未来，随着工具架构与工艺要求演进，HHC量化管控将更加依赖可溯源基准、稳定的工程实

现与数据闭环。REALMETER® 将持续完善介质覆盖、接口与软件化流程，提升长期稳定性与现

场可操作性，并与客户共同迭代更贴合量产现场的推荐实践。

附录 0：符号与单位说明（建议对外发布保留）
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1）漏率/吞吐量（Throughput）Q  ：单位 Pa·m³/s  或mbar·L/s； 算：换 1 Pa·m³/s = 10 

mbar·L/s。

2  ） 分稳态 压 P  ：单位 Pa、mbar  或 Torr；需在 告中固定 位 注明 点位置。常用报 单 并 测 换

算：1 mbar = 100 Pa；1 Torr  133.322 Pa≈ 。

3  ）有效抽速 S_eff  ：单位m³/s  或 L/s  ；用于 P = Q / S_eff。S_eff 需考虑管路电导与阀门开

度，可在相同构型下通过标准漏孔反算或通过导通计算估算。

附录：关键数据记录模板

说明：以下表格为现场执行与审计留档模板。建议在每次系统改造、抽速/电导变化、RGA更换或
维护后重新建立本底与响应因子，并将记录随报告归档。

附录 1：系统本底基线信号统计表

 表 7  附录 1：系统本底基线信号统计表（模板）

m/z 碎片/物种（备
注）

 本底均值 Ī
（counts/s）

 标准差 σ
（counts/s）

建议阈值（例
 如 Ī+3σ）

采集设置/备注

43 C3H7+ / 烃类
代表峰

57 C4H9+ / 烃类
代表峰

71 C5H11+
85 C6H13+
18 H2O（水汽）
28 N2/CO（背

景）
44 CO2（背景）

 注：建议使用同一采集参数（质量范围、驻留时间、平均次数、增益）记录本底；阈值可按 Ī+3σ 
或按客户 spec设定。

附录 2：响应因子标定报告

 表 8  附录 2：响应因子标定报告（模板-信息页）

客户/项目
系统/腔体编号
标定日期
操作员
RGA型号/序列号
检测器/增益设置
采集参数（质量范围/驻留/平均）
标准漏孔证书编号（Q）
介质/温度/连接构型
备注（S_eff估算/反算方法）
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 表 9  附录 2：响应因子标定报告（模板-通道数据表）

m/z 碎片/物种 I_baselin
e
（counts
/s）

I_on
（counts
/s）

I_net=I_o
n-
I_baselin
e

Q
（Pa·m³/
s）

P_std=Q/
S_eff
（Pa）

K=I_net/
P_std
（counts
/s/Pa）

43 C3H7+
57 C4H9+
71 C5H11+
85 C6H13+

附录 3：HHC污染判定阈值表

 表 10  附录 3：HHC污染判定阈值表（模板）

对象/模块 监测m/z集合  分压阈值
P_th（Pa）

 信号阈值 I_th
（counts/s）

触发动作（建
议）

复核/证据链

EUV关键光学
腔体（示例）

43/57/71/85 报警→保持工
艺/暂停曝光待
确认

对比本底；检
查阶段相关
性；必要时材
料替换/外部检
漏

上游供气/载气
相关段（示

57（代表） 报警→检查阀
组/密封/管路
清洁

He检漏（m/
z=4）； 比对
阀位与阶段；
检查泵前压力

维护后恢复验
证（示例）

43/57/71/85 通过→恢复量
产；不通过→
继续烘烤/排查

对比维护前K
与本底；确认
S_eff未变化
或已重标定
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